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coefficient to be the principal one in the expansion of at least one of the functions. As 

shown by expansions (A. 2) and (A. 3) this is not so for 3x / 4 :V,, outside that range. 
In concluding the author thanks 0. S, Ryzhov for his advice and interest. 
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We construct a class of exact solutions of the equation for the velocity potential 

of unsteady plane flows of a polytropic gas. These solutions contain an infinite 
number of arbitrary functions of a single argument. They are given in the form 

of series in rational powers of the characteristic argument in the space of varia- 
bles of the time-velocity hodograph. We study the applications of the series ob- 
tained to solving certain problems of flows arising during the motion of curvili- 
near pistons through a gas, so that at the initial instant the normal velocity and 
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acceleration of the pistons are equal to zero. When the motion has a cylindrical 
symmetry, we study the convergence of the series obtained, over a short period 
of time. Numerical results obtained are quoted. The present paper is the conti- 

nuation of the investigation begun in [l, 21. 

1, Following [l] we write :ilc’ equation for the function qJ (r, cp, 1) which is an ana- 

log of the velocity potential CL, (x1, x2, t) , in the following form 

The subscripts accompanying Y denote differentiation with respect to the correspond- 
ing arguments, t is time and r, q are the polar coordinates in the velocity uIP uz 
hodograph plane. The function ‘Ir is related to the potential (1) by the following for- 

mula 
Y = .zlU1 + 5& - 0 -I- nit 

(d),, = u1 = r cos q, mx, = 7~~ == r siri cp) 

where M is a constant appearing in the Cauchy integral (C denotes the speed of sound 

and y is the adiabatic index) 

Having determined the function Y we can obtain the flow in the physical space x1, 

x2, I from the formulas 
5, = Y7 Cos cp - r-l Y, sin cc’, .rg = Y, sitI (p -t r-l YQ cos cp (1.2) 

In r2. 31 the authors constructed a class of solutions for (1.1) in the form 

Y (r, ‘p, t) = 5 P) (9, t) Ah’) 
k=o 

where .(lr) were determined from certain linear differential equations and contained 
arbitrary functions of cp. This class of solutions was then used to solve the following 

problem. 
Let at the initial instant t = (1 a homogeneous polyir<lpic gas in wliicii the speed of 

sound c := 1 be at rest inside or outside a reasonably smooth closed convex cylindrical 

surface S,,. At instant t = 0 piston S’, begins to move at zero initial normal velocity 

C’, and with nonzero initial normal acceleration L\‘, + 0. 

The problem was to find the solution of the nonlinear equation of velocity potential 

@ (J.1, SC. t) in the region bounded by the surface of piston s’, and of the weak discon- 

tinuity L, which at the initial instant t = 0 separates from surface 50 and propagates 

through the quiescent gas at unit normal velocity. 

We shall consider the following problem, more general than the one solved in [ 21. 
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Let the motion of the piston surface S1 be defined by the equations 

21 = x1 (BY t), 5s = 2% (BY r>, p E IO, bl 0.3) 

where fl is a parameter such that P = cp when t = 0, and let the equation of the 
piston surface SO be determined by 

X1 = f (v,) cos rp - f’ (cp) sin rp, X0_ == f (9) sin cp + f’ (cp) cos cp 

The function f (9) defines the arbitrariness in the choice of the form of S, ; the sur- 
face of weak discontinuity &, coincides with it when t = 0. We shall assume that the 
normal velocity of the piston computed by the formula 

can be expanded at small values of t into a convergent series of the form 

v, (t, 6) = i g(k)(B) t(? 11 > 1 
IC=?l 

(1.4) 

We seek a solution in the region of perturbrd motion of gas between the surfaces St 
and Lt (the case n = 1 was analyzed in [Z]). Let us construct the solution of the 
problem formulated above in the form 

‘i’(r, q, t) = a, + a, (rp, t)r -7 5 btk“) (rp, ~)r(k+~+l’ ’ 11 
h-=0 

From the results of [2] it follows that 

CL 5) 

a0 = xt + const, a, = t + f (9) (1.6) 

Substituting the series (1.5) into (1.1) and equating to zero the coefficients of 
fik+?l+t):IL we obtain a system of linear differential equations from which the coefficients 

b@+r) (k > 0) are found one after another. 
Since the formulas become very cumbersome, in the following we shall limit our dis- 

cussions to the case n L- 2 (this corresponds to the case when at the initial instant 
t = 0 the normal accelerations and velocity of the piston are zero, but the derivative 
of the normal acceleration is not zero). The system defining the coeffcients b(Q (n = 
2) has the form 

- 3 (t + f + f”) bi” -+ 3/a b”’ = 0 0.7) 

- 4 (t + f 4 j”) b’,2’ i- 2bc2” + (t + f + f) (x-’ + 2) + 

bt:‘b’,l’ [2t + 2f - f’] + 3/4bj:)b(1) [t + f j- 2j”] + 

b[p:)b!,? [3x-’ - 21 - 3b$)bf”f’ - Q/4 (bj”)” [t + f + f”] - 
Q!,bjl’b(L) - 3@bi” = 0 

- (k f 3) (t f f + f”) bjkcl) --f- Ii4 (k + 3) (k + 1) bcktl) + 

%3~(R+1(T7 t) = 0 (k>2) 

the functions F(k+r’(rp, t) depend on the functions a,, a,, b(“) (cp, t) (m < k -f- f) 
and on their first and second order derivatives, and can be written out in the explicit 
form. Let us write the expressions for F ck+t) (t) for the case of a motion with cylindrical 

symmetry (the expressions for F@+l’ (cp, t) become very cumbersome in the general 
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case) ( * ) 
k--l 

Fcktl) (t) = 2 (2 (m + 3) (m + 2) a&j:-mw’n+l) - (1.8) 
m=0 

2 (k + 2 - m) alpm)~j;‘+~) - 4 (m + 3) (k + 2 - m) p”qp’) - 

2 (m $ 3) (k t 2 - n) a&jm+%jk-m)} + 
k-2 

2 ((3 t_ p _ m) (k + 1 _ p) (k _ p) ~~~‘tl)~(pil-‘r’)~(~‘-l-P~- 
p, m=o 
(m + 3) (p _I_ 3 - m) bl~-1-7J)b(p+l-m)h(rn+l) + 

2 (k + 1) (v + 4) b(‘-‘) + 2~ (4 + 4 (k + I)) hjk ” j- 

(n j- 3) (p + 3 - m,) (k + 1 - p) bip+l-‘~)bj”‘~l)b(X‘-l-p) ) -b 
ii-3 

The general solution of (1.7) has the form 
(1.9) 

b(k+l) _ (t + f + fn)(k+l)f 1 /,N-+~) ((p) +- ,,jLli_ :~) jf++l+f, 0 ct + f + f~)-(‘i+~* d f 

where cck+i) (9) are arbitrary functions which can be determined from the law of mo- 

tion of the piston St. 

2. Let us determine the functions ccktl) (rp). Following [Z] we write the kinematic 
condition of motion 

r* (B, t) (cos ‘p* (Pt 0% (P, r) -t sin ‘p+ (B, t)n, (p, t)) = V,, (0, t) (2.1) 

Here ru (fi, t) and ‘p* (13, t) are certain, a priori unknown functions such that 
* = r* cos ‘p*, uz* = r* sin ‘p* define the components of the velocity vector at the 

Zton (cp* (cp, 0) = cp, r* (9, 0) = 0). The functions r.+ (p, t) and ‘p* (p, t! 
are obtained from the system of equations 

*) The detailed computations and expressions for these functions can be found in a re- 
port deposited in the library of the Mathematics and Mechanics Institute of the Ural 
Research Center of the Academy of Sciences U.S.S.R. 
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The algorithm used to determine the arbitrary c@+r) (cp) is basically analogous to 
that given in [ 23. but differs from it in the fact that the differentiation of (2.2) with res- 

pect to t gives rise to indeterminacies of the form ~;~-?%?+~r* / atn+l (T* -> 0 when 
t--t 0) and these must be expanded using (1.4). 

The relation (2.1) is an identity with respect to the variables p and t. Let us differ- 

entiate (2.1) with respect to t and assume t = 0. We also differentiate (2.2) with 
respect to t and pass to the limit as t ---f 0. The resulting sequence of equations ena- 

bles us to compute all @*If (cp) (k > 0). Thus, after the first differentiation of (2.1) 

and (2.2) we have the equation 

(2.3) 

for definition of c(i) (9) . From (1.4), (2.3) and (1.9) we obtain 

lim J_ r-‘2 ar, CT,, 9 (1) 

t+o i * at 
b = + fg’2’P(y,) 

. 
2 

cfl) Cp) - - 3 &pf (q) (f _I f”)‘.‘” 

In the next step we find c@) (v) by differentiating (2.2) twice with respect to t and 

constructing linear combinations, we obtain the following equations : 

where dq, (0, rp) / 62 and d’r, (0, cp) / dt2 are defined by formulas 

a’F* (0, f) 
at = (I (y) + p (cp))--” ($ - 1;2 7.;1,” % P) 

I7 = - X1 (0, cp) sin cp + 5’L (0, cp) cos cp, 
@r. (0, cp) = @I’, (9, q) at 8% 

It is evident that the above procedure can be continued. The condition f (cp)‘+f”(rp)# 
0 ensures that the functions @+i) (cp) (k > 0) can be determined uniquely, The equa- 

tion for the determination of the other constants C(k+l) (cy) (k > 2) is very cumber- 
some and shall not be given here. 

2. Let us consider in more detail the case of motions with cylindrical symmetry 
when the piston St represents, at t = 0 , a cylinder of radius Ro. Then the formulas 

(1.2) will be replaced by 

E = I/‘.$ -i X22 = ‘FT i’, t) (3.1) 

Consider the problem of disruption of perturbed potential compression flows generated 
by the motion of the cylinder St. We compute some of the coefficients of the series 

(1.5) 
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p = - 
ZR,?a(t -+ Ho)” 

3G 

bc2’ = _ 
R-V2 

&2 
+ (r+W’$ 

2 1 

(t ~,_ RO)~,l + (r -L- I) (t + Ro) + 3”;“” (t t- R4-‘,2 
2 :1%G‘J 

and restrict ourselves to an approximate expression for the function ty’ (r, t) in the form 

‘I’ (r, t) =- a, 1~ c,r -j- b(l)r’,z + b(Z)$b(3Jrs P (3.2) 

under the assumption that within the region of perturbed motion, the velocities ahead of 

the weak discontinuity L are small compared with the speed of sound. From (3.1) we 

obtain 
(3.3) 

The instant of disruption of the potential flow corresponds to the smallest value of 2* 

at which dr / rlc becomes infinite or (15 / Or becomes zero [4]. The place and time of 
the “gradient collapse” is determined by solving simultaneously the following two equa- 
tions 

Fig. 1 

aE ( ) - = 
ar t 0, $- ( ) _ (1 (3.4) 

t 

where E is taken from (3.3). The general 
case of disruption of potential flows directly 
on the weak discontinuity L, was studied in 
[ 11. In the class of the flows in question the 
derivatives of the gasdynamic quantities are 
zero at the surface L, at all times, and deri- 
vatives of infinite value may appear either 
within the region of compression contained 
between the surfaces ,‘$, and L,, or directly 

at the surface S,. No analytic solution of the 
system (3.4) could be obtained for ‘Y (r, I) 

from (3.2) but the time t* and position E* 
of the onset of disruntion of the potential flow 
can always be found by numerical methods. 
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Example. Let the gas at the initial instant t = 0 be at rest outside a cylindrical 

piston of radius RO. At the instant t = 0 the piston begins to expand according to the 

law LV, _ &Z)rz + pt3 + pt4 

Figure 1 gives for the above law of motion the velocity profiles at three instants oftime. 

The profiles show that a shock wave is formed at some point between the piston surface 
St and the surface of weak discontinuity Lt. Numerical computations for y = 1.4, 
&U = 0.25, g(s)z 2, g (4) = 6.2 and R,= I,25 gave 

t * = 0.038, <* = 1.259 

Note. Just as in [Z], we can use the expression (3.3) for !P to describe the flows 
behind the shock wave appearing at t = t* , under the assumption that the wave remains 

weak. 

4. Let us investigate the convergence of the functional series (1.5) for the case of 
flows with cylindrical symmetry. We pass from r to a new variable z according to the 

formula 1/F=2 (4.1) 
Then (1.1) becomes 

YttYY,Y,* Yf 1YZZ 1 YtYzz yty’, 
8z5 -7 -kT---- -- II 4z= + 423 

(4.2) 

ZayZZ Z ZY 
8 8 1 --+T- Yzt2Yz YY,tYz zyz __o 

8z5 2 

The boundary conditions at z = 0 are 

Y (0, t) = xt -1 const, Yv, (0, t) = 0, Yzz (0, t) = 2 (t + R,) (4.3) 

Let X (t) be the specified law of motion of the piston 

x (0) = ROT 

From (3.1) follows 

x’ (0) = 0, x” (0) = 0, x” (0) # 0 (4.4) 

x’ (t) = Y,, (x’ (0, t> x” (t> + ytt (x’ WV t> (4.5) 

From (4.5),using the relation X’ (t) = r (t) = z2 (t) at the piston, we obtain 

(4.6) 

From the conditions (4.4) it follows that the function z = I/r = I/X’ (t) is ana- 
lytic in the vicinity of zero and dz/dtj l=. # 0. Then for small z there exists an in- 
verse function and the relation (4.6) can be written in the form 

2’ = ZY,,-- Y* 1 
222 111(2) t- 2 for t = q (2) (4.7) 

Thus, the substitution (4.1) yields (4.2) with the conditions (4.3) and (4.7). Let us now 
replace the function Y (z, t) by another unknown function CD (z, t) according to the 
formula 

‘P (2, t) = xt t- const + (t + R,) z2 + 0 (2, t) z3 (4.8) 

The equation for (11 (3. r) which follows from (4.2) and the boundary condition (4.7) 

now become 
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cf, + czaz + 2mzz = fa (2, t, .a~, zWzJ for t = Tl (4 

where A, B and C are positive constants and the functions fl, fz, fe and f4 are ana- 

lytic in all variables. By the theorem proved in [5] the problem (4.9) has a unique ana- 

lytic solution and the series (1.5) as well as the series for the second order derivatives 
obtained from (1.5) converge in some neighborhood of the point (0, 0). 
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Proof is given of certain statements about forces acting on uniformly heated bo- 
dies in a gas. It is shown that bodies heated to different temperatures repel each 
other, while a heated and a cooled body are mutually attracted, A new form of 
thermophoresis is indicated, These phenomena are the result of Barnett thermal 
stresses. The existence of similar effects induced by concentration stresses in gas 

mixtures is established. 

1, Fundamental relation$htpc, When defining slow (characteristic Reynolds 

number R ==; 1 and Mach number J%! < 1) flows of gas in a substantially nonuni- 
form temperature field, i, e. whose characteristic relative temperature differentials 

z, ==: 1, it is necessary to take into consideration Barnett thermal stresses 


